2 00 4 On primes p for which d divides ord p ( g )

نویسنده

  • Pieter Moree
چکیده

Let Ng(d) be the set of primes p such that the order of g modulo p, ordp(g), is divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, δg(d), with δg(d) ∈ Q>0. Let Ng(d)(x) be the number of primes p ≤ x that are in Ng(d). A simple identity for Ng(d)(x) is established. It is used to derive a more compact expression for δg(d) than known hitherto.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Smarandache problem concerning the prime gaps

In this paper, a problem posed in [1] by Smarandache concerning the prime gaps is analyzed. Let's n p be the n-th prime number and n d the following ratio: 2 p p d n 1 n n − = + where 1 ≥ n If we indicate with n n n p p g − = +1 the gap between two consecutive primes, the previous equation becomes: 2 n n g d = In [1], Smarandache posed the following questions: 1. Does the sequence n d contain i...

متن کامل

2 7 M ar 2 00 3 Bernoulli Numbers , Wolstenholme ’ s Theorem , and p 5 Variations of Lucas ’ Theorem ∗

In [7, Proposition 2.9] we further proved that H1(p − 1) ≡ 0 (mod p ) if and only if p divides the numerator of Bp(p−1)−2, which never happens for primes less than 12 million. There is another important equivalent statement of Wolstenholme’s Theorem by using combinatorics. D.F. Bailey [1] generalizes it to the following form. Theorem 1.1. ([1, Theorem 4]) Let n and r be non-negative integers an...

متن کامل

6 M ar 2 00 3 Bernoulli Numbers , Wolstenholme ’ s Theorem , and p 5 Variations of Lucas ’ Theorem ∗

In [7] we further proved that H1(p−1) ≡ 0 (mod p ) if and only if p divides the numerator of Bp−3, which never happens for primes less than 12 million [2]. There is another important equivalent statement of Wolstenholme’s Theorem by using combinatorics. D.F. Bailey [1] generalizes it to the following form. Theorem 1.1. ([1, Theorem 4]) Let n and r be non-negative integers and p ≥ 5 be a prime. ...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Generating elements of orders dividing p 6 ± p 5 + p 4 ± p 3 + p 2 ± p + 1 Maciej Grześkowiak ∗

In this paper we propose an algorithm for computing large primes p and q such that q divides p + p + p + p + p + p + 1 or p − p + p − p + p − p + 1. Such primes are the key parameters for the cryptosystem based on the 7th order characteristic sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008